Extensions 1→N→G→Q→1 with N=Q83S3 and Q=C22

Direct product G=N×Q with N=Q83S3 and Q=C22
dρLabelID
C22×Q83S396C2^2xQ8:3S3192,1518

Semidirect products G=N:Q with N=Q83S3 and Q=C22
extensionφ:Q→Out NdρLabelID
Q83S31C22 = SD1613D6φ: C22/C1C22 ⊆ Out Q83S3484Q8:3S3:1C2^2192,1321
Q83S32C22 = D815D6φ: C22/C1C22 ⊆ Out Q83S3484+Q8:3S3:2C2^2192,1328
Q83S33C22 = D85D6φ: C22/C1C22 ⊆ Out Q83S3488+Q8:3S3:3C2^2192,1333
Q83S34C22 = C24.C23φ: C22/C1C22 ⊆ Out Q83S3488+Q8:3S3:4C2^2192,1337
Q83S35C22 = C2×Q83D6φ: C22/C2C2 ⊆ Out Q83S348Q8:3S3:5C2^2192,1318
Q83S36C22 = C2×Q8.7D6φ: C22/C2C2 ⊆ Out Q83S396Q8:3S3:6C2^2192,1320
Q83S37C22 = C2×D24⋊C2φ: C22/C2C2 ⊆ Out Q83S396Q8:3S3:7C2^2192,1324
Q83S38C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out Q83S3484Q8:3S3:8C2^2192,1326
Q83S39C22 = S3×C8⋊C22φ: C22/C2C2 ⊆ Out Q83S3248+Q8:3S3:9C2^2192,1331
Q83S310C22 = D84D6φ: C22/C2C2 ⊆ Out Q83S3488-Q8:3S3:10C2^2192,1332
Q83S311C22 = D24⋊C22φ: C22/C2C2 ⊆ Out Q83S3488+Q8:3S3:11C2^2192,1336
Q83S312C22 = C2×Q8.15D6φ: C22/C2C2 ⊆ Out Q83S396Q8:3S3:12C2^2192,1519
Q83S313C22 = C2×D4○D12φ: C22/C2C2 ⊆ Out Q83S348Q8:3S3:13C2^2192,1521
Q83S314C22 = C6.C25φ: C22/C2C2 ⊆ Out Q83S3484Q8:3S3:14C2^2192,1523
Q83S315C22 = S3×2+ 1+4φ: C22/C2C2 ⊆ Out Q83S3248+Q8:3S3:15C2^2192,1524
Q83S316C22 = S3×2- 1+4φ: C22/C2C2 ⊆ Out Q83S3488-Q8:3S3:16C2^2192,1526
Q83S317C22 = D12.39C23φ: C22/C2C2 ⊆ Out Q83S3488+Q8:3S3:17C2^2192,1527
Q83S318C22 = C2×S3×C4○D4φ: trivial image48Q8:3S3:18C2^2192,1520
Q83S319C22 = D6.C24φ: trivial image488-Q8:3S3:19C2^2192,1525

Non-split extensions G=N.Q with N=Q83S3 and Q=C22
extensionφ:Q→Out NdρLabelID
Q83S3.1C22 = D12.30D4φ: C22/C1C22 ⊆ Out Q83S3964Q8:3S3.1C2^2192,1325
Q83S3.2C22 = D811D6φ: C22/C1C22 ⊆ Out Q83S3484Q8:3S3.2C2^2192,1329
Q83S3.3C22 = SD16.D6φ: C22/C1C22 ⊆ Out Q83S3968-Q8:3S3.3C2^2192,1338
Q83S3.4C22 = C2×Q16⋊S3φ: C22/C2C2 ⊆ Out Q83S396Q8:3S3.4C2^2192,1323
Q83S3.5C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out Q83S3484Q8:3S3.5C2^2192,1327
Q83S3.6C22 = S3×C8.C22φ: C22/C2C2 ⊆ Out Q83S3488-Q8:3S3.6C2^2192,1335

׿
×
𝔽